

Metall-Silicium-Dreifachbindungen: Synthese und Charakterisierung des Silylidin Komplexses [Cp(CO)₂Mo≡Si-R]

Angew. Chem. 2010, 122, 3368-3372, Alexander C. Filippou*, Oleg Chernov, Kai W. Stumpf, Gregor Schnakenburg

Gliederung

- 1. Einleitung
- 2. Voraussetzung
- 3. Synthese
- 4. Ausblick
- 5. Literaturverzeichnis

1.Einleitung

- Übergangsmetall-Alkylidin-Komplexe wichtige Verbindungsklasse der Organometallchemie
- Vielzahl stöchiometrischer und katalytischer Umsetzungen möglich
- Keine analoge Verbindung mit Silicium → Unterschied zwischen Silicium und Kohlenstoff bei der Ausbildung von Mehrfachbindungen
- Übergangsmetalldreifachbindungen zu Ge, Sn und Pb konnten durch die Reaktion mit z.B. Carbonylmetallaten und Organotetrel(II)-halogeniden erhalten werden
- In der Siliciumchemie lange keine geeigneten Organosilicium(II)halogenide

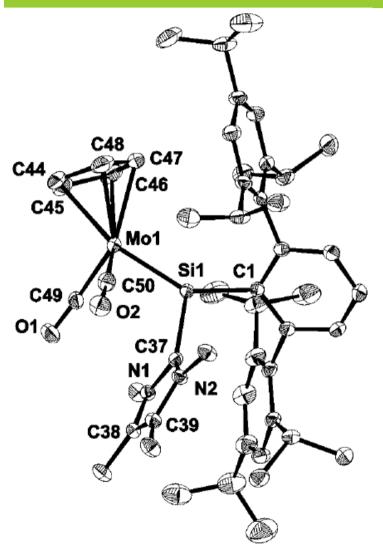
2. Voraussetzung

 $Ar = C_6H_3-2,6-Trip_2$

- N-heterocyclische Carbene sind in der Lage Arylsilicium(II)-chloride zu stabilisieren
- Entstehung eines ungeladenen Moleküls mit freiem Elektronenpaar am Silicium
- Die Synthese des ersten Komplexes mit einer Metell-Silicium-Dreifachbindung aus dieser Verbindung wird in diesem Artikel vorgestellt

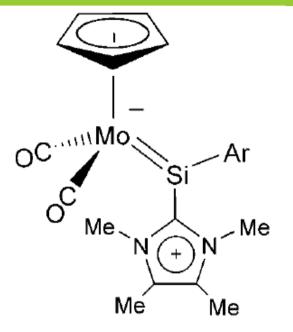
Me

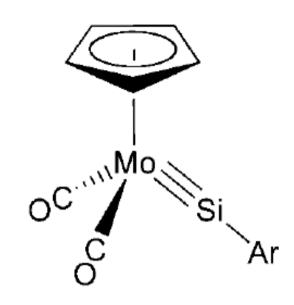
Me Me
$$+$$
 Li[CpMo(CO)₃] $+$ Li[CpMo(CO)₃] $+$ Cl., Me $+$ CO, -LiCl $+$ CO, -LiCl $+$ CO, -LiCl $+$ Co., Me $+$ Ar $+$ Ar $+$ C₆H₃-2,6-Trip₂


- Addition des Arylsilicium(II)-chlorids mit einem Carbonylmolybdat
- Farbwechsel von Gelb über Braungrün nach Braun
- Schnelle Umsetzung zu Silyliden-Komplex, nach einer Umkristallisation konnte Feststoff mit 51% Ausbeute erhalten werden

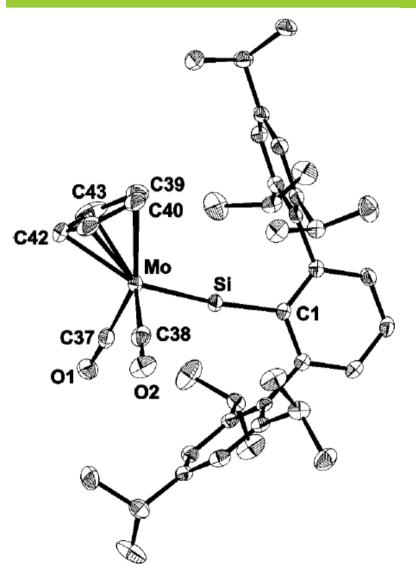
Me

Strukturaufklärung



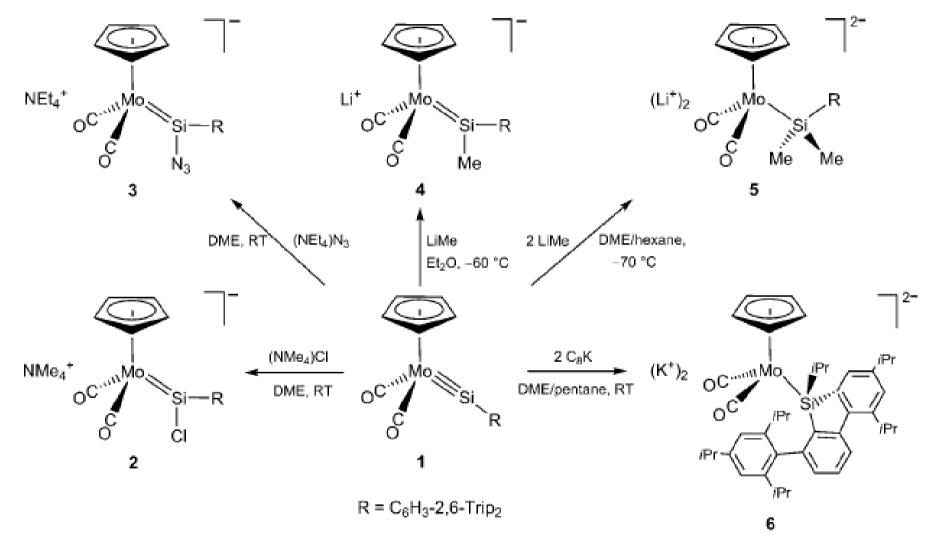


- Molekülstruktur durch Röntgenstrahlenbeugung an einem Einkristall
- Bindungslänge der Mo-Si-Doppelbindung beträgt 234,5 pm
- Silyliden-Ligand enthält ein triagonalplanar koordiniertes Si-Zentrum (Winkelsumme 357°)
- Deutlich unterschiedliche Bindungswinkel am Si-Atom auf Grund der sterischen Abstoßung zwischen Ar-Rest und dem Metallzentrum



- Abstraktion des Carbens (Im-Me₄ = Tetramethylimidazol-2-yiliden) durch ein Boran (B(p-Tol)₃)
- Entstehung des Silylidin-Komplexes und des Lewis-Säure-Base-Adukts
- Fraktionierte Kristallisation zur Trennung der beiden Produkte
- Ziegelroter Feststoff mit 53% Ausbeute

Strukturaufklärung



- Molekülstruktur durch Beugung von Röntgenstrahlen an einem Einkristall
- Bindungslänge der Mo-Si-Dreifachbindung beträgt 222,4 pm (12 pm kürzer als im Silyliden-Komplex)
- Annähernd linear koordiniertes
 Siliciumatom
 (Bindungswinkel = 173,5°)

4. Ausblick

5. Literaturverzeichnis

- Chm. Eur. J. 2010, 16, 2866-2872, Stable N-Heterocyclic Carbene Adducts of Arylchlorosilylenes and Their Germanium Homologues, Alexander C. Filippou*, Oleg Chernov, Burgert Blom, Kai W. Stumpf, Gregor Schnakenburg
- Angew. Chem. 2010, 122, 3368-3372, Metall-Silicium-Dreifachbindungen: Synthese und Charakterisierung des Silylidin Komplexes [cp(CO)₂Mo Si-R], Alexander C. Filippou*, Oleg Chernov, Kai W. Stumpf, Gregor Schnakenburg
- Angew. Chem. 2011, 123, 1154-1158, Metal-Silicon Triple Bonds: Nucleophilic Addition and Redox Reactions of the Silylidyne Complex [cp(CO)2Mo Si-R], Alexander C. Filippou*, Oleg Chernov, Gregor Schnakenburg

Vielen Dank für die Aufmerksamkeit!